Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation.
نویسندگان
چکیده
Ataxia oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin, a putative DNA/RNA helicase which shares high homology to the yeast Sen1p protein and has been shown to play a role in the response to oxidative stress. To investigate further the function of senataxin, we identified novel senataxin-interacting proteins, the majority of which are involved in transcription and RNA processing, including RNA polymerase II. Binding of RNA polymerase II to candidate genes was significantly reduced in senataxin deficient cells and this was accompanied by decreased transcription of these genes, suggesting a role for senataxin in the regulation/modulation of transcription. RNA polymerase II-dependent transcription termination was defective in cells depleted of senataxin in keeping with the observed interaction of senataxin with poly(A) binding proteins 1 and 2. Splicing efficiency of specific mRNAs and alternate splice-site selection of both endogenous genes and artificial minigenes were altered in senataxin depleted cells. These data suggest that senataxin, similar to its yeast homolog Sen1p, plays a role in coordinating transcriptional events, in addition to its role in DNA repair.
منابع مشابه
Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage
A defective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivit...
متن کاملMutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.
Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA...
متن کاملA Novel Mutation in the Aprataxin (APTX) Gene in an Iranian Individual Suffering Early-Onset Ataxia with Oculomotor Apraxia Type 1(AOA1) Disease
Background: Ataxia with oculomotor apraxia type 1 (AOA1) shows early onset with autosomal recessive inheritance and is caused by a mutation in the aprataxin (APTX) gene encoding for the APTX protein. Methods: In this study, a 7-year-old girl born of a first-cousin consanguineous marriage was described with early-onset progressive ataxia and AOA, with increased cholesterol concentration and decr...
متن کاملSenataxin Associates with Replication Forks to Protect Fork Integrity across RNA-Polymerase-II-Transcribed Genes
Transcription hinders replication fork progression and stability. The ATR checkpoint and specialized DNA helicases assist DNA synthesis across transcription units to protect genome integrity. Combining genomic and genetic approaches together with the analysis of replication intermediates, we searched for factors coordinating replication with transcription. We show that the Sen1/Senataxin DNA/RN...
متن کاملHereditary Ataxia with a Novel Mutation in the Senataxin Gene: A Case Report
Hereditary ataxias (HA) are a group of inherited neurological disorders caused by changes in genes. At least 115 different mutations in the senataxin (SETX) gene causing ataxia have been identified. There are no reports of any SETX gene mutation among the Iranian population. Here we report on two cases with homozygous and heterozygous mutations in which one patient was affected by HA with oculo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 18 18 شماره
صفحات -
تاریخ انتشار 2009